Identification of Gene-Tyrosine Kinase 2 (TYK2) in Head and Neck Squamous Cell Carcinoma Patients—An Integrated Bioinformatics Approach

Author:

Gong Xiaoyan1ORCID,Ren Fukai2ORCID

Affiliation:

1. Department of Stomatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi Province, China

2. Department of Stomatology, Changzhi Medical College, Changzhi, 046000 Shanxi Province, China

Abstract

Background. The human tyrosine kinase 2 (TYK2) has been found to be associated with at least 20 autoimmune diseases; however, its tumor-regulating role in head and neck squamous cell carcinoma (HNSC) has not been researched by using an integrative bioinformatics approach, yet. Objective. To investigate the regulating mechanisms of the TYK2 gene in HNSC in terms of its expression pattern, prognostic values, involved biological functions, and implication of tumor immunity. Methods. The TYK2 gene expression pattern and regulatory involvement in HNSC were investigated using publically accessible data from TCGA database. R software tools and public web servers were utilized to conduct statistical analysis on cancer and noncancerous samples. Results. TYK2 was found to be significantly upregulated in HNSC samples compared with healthy control samples. The expression of TYK2 gene was shown to be associated with the prognosis of HNSC by showing its upregulation represented better survival outcome. The regulating role of TYK2 in HNSC was found mainly in several pathways including DNA replication, base excision repair, apoptosis, p53 signaling pathway, and NF-kappa B signaling pathway. The gene set enrichment analysis (GSEA) results showed that TYK2-significantly correlated genes were mainly enriched in several biological functional terms including cell cycle, DNA replication, PLK1 pathway, ATR pathway, and Rho GTPase pathway. In addition, TYK2 was found to be involved in tumor immunity, showing positive correlation with the majority of tumor infiltrating immune cells, immune checkpoint genes, and significant representative components of tumor microenvironment, according to the ESTIMATE-Stromal-Immune score. Conclusions. Given the dysregulation, prognostic values, regulating tumor progression-related pathways, and the tumor immune-modulatory role of TYK2 in HNSC, the TYK2 gene should be regarded as a potential therapeutic target in treating head and neck cancer.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3