Author:
McLachlan David S.,Sauti Godfrey
Abstract
The microstructures of binary (conductor-insulator) composites, containing nanoparticles, will usually have one of two basic structures. The first is the matrix structure where the nanoparticles (granules) are embedded in and always coated by the matrix material and there are no particle-particle contacts. The AC and DC conductivity of this microstructure is usually described by the Maxwell-Wagner/Hashin-Shtrikman or Bricklayer model. The second is a percolation structure, which can be thought to be made up by randomly packing the two types of granules (not necessarily the same size) together. In percolation systems, there exits a critical volume fraction below which the electrical properties are dominated by the insulating component and above which the conducting component dominates. Such percolation systems are best analyzed using the two-exponent phenomenological percolation equation (TEPPE). This paper discusses all of the above and addresses the problem of how to distinguish among the microstructures using electrical measurements.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献