Desorption Characterization of Methane in Coal with Different Moisture Contents and Its Influence on Outburst Prediction

Author:

Li Peng12,Cao Yaolin12,Li Xuelong34ORCID,Wang Fakai5ORCID,Sun Zhongguang46ORCID,Chen Deyou3,Huang Qinke3,Li Zhen3

Affiliation:

1. China Coal Technology and Engineering Group Shenyang Research Institute Co., Ltd., Fushun, Liaoning 113122, China

2. State Key Laboratory of Coal Mine Safety Technology, Fushun, Liaoning 113122, China

3. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, College of Resources and Environmental Science, Chongqing University, Chongqing 400044, China

5. College of Mining Engineering, Guizhou Institute of Technology, Guiyang 550000, China

6. State Key Laboratory of The Gas Disaster Detecting, Preventing and Emergency Controlling, Chongqing 400037, China

Abstract

Coal and gas outburst is a dynamic phenomenon with violent eruptions of coal and gas from the working coal seam. It has been proved that rapid desorption within a short period is necessary for the occurrence of an outburst. Due to the limitation of the present test condition, gas desorption characterization in coal with different moisture content for the first several seconds (0–60 s) has not been researched sufficiently. In this study, initial desorption characterization of gas in coal with different moisture content is studied by experiments with methane. The most remarkable characteristic of the experimental setup is the application of a self-developed real-time data acquisition system with a time interval of about 10 ms, which achieves the goal of collecting enough pressure data for analysis and calculation. The data is used to study gas pressure variation and calculate the initial amount of desorbed gas and index (ΔP) of initial velocity diffusion of coal gas. From the experimental results, the new proof has been found to verify that coal with lower moisture content and methane outburst is more dangerous than coal with higher moisture content and outburst. The degree of coal and methane outburst is exponentially decaying with increasing moisture content.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3