Affiliation:
1. Department of Information and Communication Engineering, Harbin Engineering University, 150001 Harbin, China
Abstract
A novel direction of arrival (DOA) estimation method in compressed sensing (CS) is proposed, in which the DOA estimation problem is cast as the joint sparse reconstruction from multiple measurement vectors (MMV). The proposed method is derived through transforming quadratically constrained linear programming (QCLP) into unconstrained convex optimization which overcomes the drawback thatl1-norm is nondifferentiable when sparse sources are reconstructed by minimizingl1-norm. The convergence rate and estimation performance of the proposed method can be significantly improved, since the steepest descent step and Barzilai-Borwein step are alternately used as the search step in the unconstrained convex optimization. The proposed method can obtain satisfactory performance especially in these scenarios with low signal to noise ratio (SNR), small number of snapshots, or coherent sources. Simulation results show the superior performance of the proposed method as compared with existing methods.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献