Affiliation:
1. Mathematics, UKZN, King George V Avenue, Glenwood, Durban 4041, South Africa
2. ARC-PPRI, Private Bag X6006, Hilton 3245, South Africa
Abstract
Much research has involved the consideration of graphs which have subgraphs of a particular kind, such as cliques. Known classes of graphs which are eigen-bi-balanced, that is, they have a pair a, b of nonzero distinct eigenvalues, whose sum and product are integral, have been investigated. In this paper we will define a new class of graphs, called q-cliqued graphs, on q2+1 vertices, which contain q cliques each of order q connected to a central vertex, and then prove that these q-cliqued graphs are eigen-bi-balanced with respect to a conjugate pair whose sum is -1 and product 1-q. These graphs can be regarded as design graphs, and we use a specific example in an entomological experiment.