A Hybrid Multiobjective Optimization Based on Nondominated Sorting and Crowding Distance, with Applications to Wave Energy Converters

Author:

Saveca John1ORCID,Sun Yanxia1ORCID,Wang Zenghui2ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2092, South Africa

2. Department of Electrical Engineering, University of South Africa, Johannesburg 1710, South Africa

Abstract

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has attracted a lot of attention since it can handle multiobjective problems (MOP) with a complicated Pareto front. The procedure involves decomposing a MOP into single subproblems, which are eventually optimized simultaneously based on the MOP neighborhood information. However, the MOEA/D strategy tends to produce a distributed optimization that is not of good quality in some problems with complex Pareto optimal front, such as problems with a long tail and sharp peak, common in real-world situations. This paper proposes an improved MOEA/D to enhance the distributed optimization quality and minimize its complexity while accelerating the optimization to get a better solution. The improved method is achieved by incorporating a Hybrid Differential Evolution/Particle Swarm Optimization algorithm and a hybrid operator based on nondominated sorting and crowding distance algorithm. This incorporation takes place in the mutation generator and initial population part of the original MOEA/D algorithm. Simulations and comparisons are carried out based on some MOP benchmark functions to verify the proposed method’s performance. The experimental results show that the proposed method achieves better performance compared to other algorithms. Furthermore, the proposed method is also applied to optimize the multiobjective wave energy converter model to maximize power per year and minimize cost per unit power.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3