Healthcare Operation Improvement Based on Simulation of Cooperative Resource Preservation Nets for None-Consumable Resources

Author:

Oueida Soraia1,Kotb Yehia2,Kadry Seifedine3ORCID,Ionescu Sorin1

Affiliation:

1. Industrial Engineering Department, Politehnica University of Bucharest, Romania

2. Computer Engineering Department, American University of the Middle East, Kuwait

3. Department of Mathematics and Computer Science, Faculty of Sciences, Beirut Arab University, Lebanon

Abstract

Healthcare systems are growing very fast, especially emergency departments (EDs) which constitute the major bottleneck of these complex concurrent systems. Emergency departments, where patients arrive without any prior notice, are considered real-time complex dynamic systems. Enhancing these systems requires tailored modeling techniques and a process optimization approach. A new mathematical approach is proposed in order to help multiple emergency units cooperate and share none-consumable resources to achieve the required flow. To achieve the cooperation, the process is modeled by a new subclass of Petri nets. The new Petri net model was proposed in a previous work and is used in this study in order to tackle the problem of modeling and managing these emergency units. The proposed Petri net is named Resource Preservation Net (RPN). Few theorems and lemmas are proposed to support the proposed Petri net model and to prove the correctness of cooperation and resource sharing. In this contribution, a model of cooperative healthcare units is proposed to achieve sound resource sharing and collaboration. The objective function of the proposed model is to improve the key performance indicators: patients length of stay (LoS), resource utilization rates, and patients waiting time. The cooperation among multiple EDs is then proposed through the study of merging two or more units. The cooperative and noncooperative behavior are also studied through theorems of soundness, separability and serializability, and a proof of scalability.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3