Affiliation:
1. Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei 430000, China
2. Department of Cardiology, Caidian District People’s Hospital, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, China
Abstract
The epicardial adipose tissue volume (EATV) was quantitatively measured by deep learning-based computed tomography (CT) images, and its correlation with coronary heart disease (CHD) was investigated in this study. 150 patients who underwent coronary artery CT examination in hospital were taken as research objects. Besides, patients from the observation group (group A) suffered from vascular stenosis, while patients from the control group (group B) had no vascular stenosis. The deep convolutional neural network model was applied to construct deep learning algorithm, and deep learning-based CT images were adopted to quantitatively measure EATV. The results showed that the sensitivity, specificity, accuracy, and area under the curve (AUC) of the deep learning algorithm were 0.8512, 0.9899, 0.9623, and 0.9813, respectively. By comparison, the correlation results of the traditional George algorithm, Aslani algorithm, and Lahiri algorithm were all lower than those of the deep learning algorithm, and the difference was statistically substantial (
). The epicardial adipose tissue volume of the observation group (114.23 ± 55.46) was higher markedly than the volume of the control group (92.65 ± 43.28), with a statistically huge difference (
). The r values of EATV with plaque properties and the number of stenosed coronary vessels were 0.232 and 0.268 in turn, both showing significant positive correlation. In conclusion, the sensitivity and other index values of deep learning algorithm were improved greatly compared with traditional algorithm. CT images based on deep learning algorithm achieved good blood vessel segmentation effects. In addition, EATV was closely related to the development of CHD.
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献