Deep Learning-Based Computed Tomography Images for Quantitative Measurement of the Correlation between Epicardial Adipose Tissue Volume and Coronary Heart Disease

Author:

Wang Han1ORCID,Wang Hui2ORCID,Huang Zhonglve2ORCID,Su Huajun2ORCID,Gao Xiang2ORCID,Huang Feifei2ORCID

Affiliation:

1. Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei 430000, China

2. Department of Cardiology, Caidian District People’s Hospital, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, China

Abstract

The epicardial adipose tissue volume (EATV) was quantitatively measured by deep learning-based computed tomography (CT) images, and its correlation with coronary heart disease (CHD) was investigated in this study. 150 patients who underwent coronary artery CT examination in hospital were taken as research objects. Besides, patients from the observation group (group A) suffered from vascular stenosis, while patients from the control group (group B) had no vascular stenosis. The deep convolutional neural network model was applied to construct deep learning algorithm, and deep learning-based CT images were adopted to quantitatively measure EATV. The results showed that the sensitivity, specificity, accuracy, and area under the curve (AUC) of the deep learning algorithm were 0.8512, 0.9899, 0.9623, and 0.9813, respectively. By comparison, the correlation results of the traditional George algorithm, Aslani algorithm, and Lahiri algorithm were all lower than those of the deep learning algorithm, and the difference was statistically substantial ( P < 0.05 ). The epicardial adipose tissue volume of the observation group (114.23 ± 55.46) was higher markedly than the volume of the control group (92.65 ± 43.28), with a statistically huge difference ( P < 0.05 ). The r values of EATV with plaque properties and the number of stenosed coronary vessels were 0.232 and 0.268 in turn, both showing significant positive correlation. In conclusion, the sensitivity and other index values of deep learning algorithm were improved greatly compared with traditional algorithm. CT images based on deep learning algorithm achieved good blood vessel segmentation effects. In addition, EATV was closely related to the development of CHD.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography;Visual Computing for Industry, Biomedicine, and Art;2024-03-22

2. D2NT: A High-Performing Depth-to-Normal Translator;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3