Affiliation:
1. Department of Mechanical Engineering, P V P Siddhartha Institute of Technology, Vijayawada, India
2. Construction Mechanical Engineer, EPC Project, Abu Dhabi LLC, Abu Dhabi, UAE
3. Department of Mechanical Engineering, Bule Hora University, Bule Hora, Ethiopia
4. Department of EEE, BVC Institute of Technology and Science, Amalapuram, Konaseema District, Andhrapradesh, India
5. Department of Mathematics, Kongunadu College of Engineering and Technology (Autonomous), Trichy, Tamilnadu, India
Abstract
In the present work, the preparation of AA-6082/ZrSiO4/TiC hybrid composite is studied along with an analysis of the effects of electrochemical machining parameters such as feed rate of electrode (FE), voltage (VO), electrolyte concentration (EL), and electrolyte discharge (ED) rate on the output responses of the material removal rate (MRR) and surface roughness (SR) for Al hybrid composites. The experiments are carried out based on the Taguchi L16 orthogonal array and the important process parameters are found for MRR and SR. Each parameter contains four different levels that are FE (0.10, 0.15, 0.20, and 0.25 mm/min), VO (10, 15, 20, and 25 V), EL (15, 20, 25, and 30 g/lit), and ED (1.5, 2, 2.5, and 3 lit/min).The optimization software, namely, Minitab-17 version helps to find the contribution of each parameter on MRR and SR. The ANOVA result reveals that the feed rate of electrode is the highest contributing parameter, trailed by the electrolyte discharge rate and other process parameters for MRR and SR. A linear model of regression and interaction plots is also included to show the relationship between the parameters. From the observational results, the highest MRR (0.00953 mg/min) is attained by the parameter combination level of the feed rate of electrode of 0.20 mm/min, voltage of 25 V, electrolyte concentration of 20 g/lit, and electrolyte discharge rate of 1.5 g/, whereas the lowest MRR is found at FE of 0.10 mm/min, VO of 10 V EL-15 g/lit and ED of 2.5 g/litre. For SR, the maximum and minimum are recognized at FE2-VO4-EL3-ED2 (0.15 mm/min, 25 V, 25 g/lit, and 2 lit/min) and FE1-VO1-EL1-ED1 (0.10 mm/min, 10 V, 15 g/lit, and 1.5 lit/min), respectively. Finally, the increment of MRR and SR values is mostly dependent on the feed rate of the electrode.
Subject
General Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献