Trajectory Optimization for a Cruising Unmanned Aerial Vehicle Attacking a Target at Back Slope While Subjected to a Wind Gradient

Author:

Jiang Tieying1,Li Jie1,Li Bing1,Huang Kewei1,Yang Chengwei1,Jiang Yimeng2

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. China Academy of Launch Vehicle Technology, Beijing 100076, China

Abstract

The trajectory of a tubular launched cruising unmanned aerial vehicle is optimized using the modified direct collocation method for attacking a target at back slope under a wind gradient. A mathematical model of the cruising unmanned aerial vehicle is established based on its operational and motion features under a wind gradient to optimize the trajectory. The motion characteristics of  “altitude adjustment” and “suicide attack” are taken into full account under the combat circumstance of back slope time key targets. By introducing a discrete time function, the trajectory optimization is converted into a nonlinear programming problem and the SNPOT software is applied to solve for the optimal trajectory of the missile under different wind loads. The simulation results show that, for optimized trajectories, the average attack time decreased by up to 29.1% and the energy consumption is reduced by up to 25.9% under specified wind gradient conditions.A,ωdire, andWmaxhave an influence on the flight trajectories of cruising unmanned aerial vehicle. This verifies that the application of modified direct collocation method is reasonable and feasible in an effort to achieve more efficient missile trajectories.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Analysis Method for Hit Accuracy of Gun-Launched Reconnaissance and Strike Integrated Unmanned Aerial Vehicle;2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE);2022-03-18

2. Identification Method of SUAV in Diving Phase Based on Flight Tests;Mathematical Problems in Engineering;2021-12-13

3. Research on Speed Scheme for Precise Attack of Miniature Loitering Munition;Mathematical Problems in Engineering;2020-09-18

4. A cooperative target search method based on intelligent water drops algorithm;Computers & Electrical Engineering;2019-12

5. Guidance and control of standoff air-to-surface carrier vehicle;The Aeronautical Journal;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3