Bridge Seismic Damage Assessment Model Applying Artificial Neural Networks and the Random Forest Algorithm

Author:

Jia Hanxi12ORCID,Lin Junqi12ORCID,Liu Jinlong12

Affiliation:

1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China

2. Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin 150080, China

Abstract

Earthquakes cause significant damage to bridges, which have a very strategic location in transportation services. The destruction of a bridge will seriously hinder emergency rescue. Rapid assessment of bridge seismic damage can help relevant departments to make judgments quickly after earthquakes and save rescue time. This paper proposed a rapid assessment method for bridge seismic damage based on the random forest algorithm (RF) and artificial neural networks (ANN). This method evaluated the relative importance of each uncertain influencing factor of the seismic damage to the girder bridges and arch bridges, respectively. The input variables of the ANN model were the factors with higher importance value, and the output variables were damage states. The data of the Wenchuan earthquake were used as a testing set and a training set, and the data of the Tangshan earthquake were used as a validation set. The bridges under serious and complete damage states are not accessible after earthquakes and should be overhauled and reinforced before earthquakes. The results demonstrate that the proposed approach has good performance for assessing the damage states of the two bridges. It is robust enough to extend and improve emergency decisions, to save time for rescue work, and to help with bridge construction.

Funder

Institute of Engineering Mechanics, China Earthquake Administration

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3