Affiliation:
1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2. University of Chinese Academy of Sciences, Beijing 100039, China
Abstract
Five-hundred-meter aperture spherical radio telescope (FAST) is supported by a cable-net structure, which enables its surface to form a real-time paraboloid by active control. FAST project is currently in the construction and implementation stage. However, there are always a considerable amount of errors that existed in practice which may result in the deviation of the structure from its ideal model or design. Therefore, structural parameter sensitivity analysis was discussed, which is indispensable. However, such deformation operation would lead to about 500 MPa of fatigue stress variation amplitude in the cable-net structure. Optimized deformation strategy is proposed to release the fatigue stress of the cable-net structure, which would be of advantage to improve the reliability of the cable-net structure. In the paper, the variation ranges of structural parameters were rationally determined. Based on local sensitivity analysis and global sensitivity analysis method, finite element model was used to study the effect of different structural parameters on the static behavior. It can be concluded that the effect of several key design parameters such as the cutting length and the elastic modulus of cable on the cable force is significant. The global sensitivity analysis indicates that the cable force range of the cable-net is −19% to 27%.
Funder
National Natural Science Foundation of China