Affiliation:
1. Department of Pathology, Jingjiang People’s Hospital, Jingjiang, Taizhou, Jiangsu 214500, China
2. Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Abstract
Colorectal cancer (CRC) is a common malignant tumor and one of the leading causes of cancer-related deaths worldwide. CRC progression is greatly affected by the local microenvironment. In the study, we proposed a deep computational-based model for the classification of mRNA, lncRNA, and circRNA in exosomes. We, first, analyzed mRNA expression levels in CRC tumors and normal tissues. Secondly, we used GO and KEGG to analyze their functional enrichment. Thirdly, we analyzed the composition of immune cells in all TCGA samples and then evaluated the prognostic value of tumor-infiltrating immune cells in CRC. Lastly, we combined the TCGA dataset, i.e., COADN = 449 and ROADN = 6, for analysis and found that the expression levels of AKT3, LSM12, MEF2C, and RAB30 in exosomes were significantly correlated with tumor immune infiltration levels. The performance evaluation has shown that the proposed model based on neural networks performs better as compared to the existing methods. The proposed model can be used as a potential tool for the immune infiltration level and their role in cancer metastasis and progression, which can help us to explore potential strategies for CRC diagnosis, therapy, and prognosis.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献