Cardiac Magnetic Resonance Images Superresolution via Multichannel Residual Attention Networks

Author:

Qiu Defu12ORCID,Cheng Yuhu12,Wang Xuesong12ORCID

Affiliation:

1. Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The deep neural network has achieved good results in medical image superresolution. However, due to the medical equipment limitations and the complexity of the human body structure, it is difficult to reconstruct clear cardiac magnetic resonance (CMR) superresolution images. To reconstruct clearer CMR images, we propose a CMR image superresolution (SR) algorithm based on multichannel residual attention networks (MCRN), which uses the idea of residual learning to alleviate the difficulty of training and fully explore the feature information of the image and uses the back-projection learning mechanism to learn the interdependence between high-resolution images and low-resolution images. Furthermore, the MCRN model introduces an attention mechanism to dynamically allocate each feature map with different attention resources to discover more high-frequency information and learn the dependency between each channel of the feature map. Extensive benchmark evaluation shows that compared with state-of-the-art image SR methods, our MCRN algorithm not only improves the objective index significantly but also provides richer texture information for the reconstructed CMR images, and our MCRN algorithm is better than the Bicubic algorithm in evaluating the information entropy and average gradient of the reconstructed image quality.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ResNet and its application to medical image processing: Research progress and challenges;Computer Methods and Programs in Biomedicine;2023-10

2. Breast ultrasound image classification and physiological assessment based on GoogLeNet;Journal of Radiation Research and Applied Sciences;2023-09

3. Detection and Recognition of Deformed Multiple QR Codes Based on SR_ESAGAN Algorithm;2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3