An Effective Inverse Procedure for Identifying DEMParameters of Rock-Like Materials

Author:

Chen Rui12ORCID,Li Jisheng12,Qian Yangqing12,Peng Ruitao12,Jiang Shengqiang12ORCID,Hu Congfang12,Zhao Ziheng12

Affiliation:

1. School of Mechanical Engineering, Xiangtan University, Hunan 411105, China

2. Engineering Research Center for Complex Track Processing Technology and Equipment, Xiangtan University, Hunan 411105, China

Abstract

This study aims to identify discrete element model parameters of rock-like materials. An inverse procedure is developed to determine the discrete element model parameters from experimental measurements. This involves the solution of an inverse problem through minimizing the misfit function which describes the error between numerical computation and experiment by an optimization procedure. In this procedure, the discrete element method is adopted as the numerical calculation method of the forward problem. The orthogonal experimental design is used for parameter sensitivity analysis. Besides, the approximation model with radial basis function is adopted instead of the actual calculation model to reduce the time of forward calculation. The ant-colony optimization algorithm is employed as the inverse operator. Therefore, the parameters of the discrete element model are optimized by this procedure. The three-point bending experiment with discrete element simulation is provided to verify the validity and accuracy of the inversion results. The results indicate that it can rapidly obtain the available and reliable model parameters just through a few sets of experimental data. As a result, this inverse procedure can be applied more widely to parameter identification of the discrete element model for brittle materials.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3