A Discrete Element Model for Damage and Fatigue Crack Growth of Quasi-Brittle Materials

Author:

Gao Xiaofeng12ORCID,Koval Georg2ORCID,Chazallon Cyrille23

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

2. ICUBE Laboratory, CNRS, University of Strasbourg, Strasbourg 67084, France

3. Shandong Provincial Key Laboratory of Road and Traffic Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

The repeatedly applied low-intensity loads would lead to the damage and fatigue crack growth of mechanical structures made of quasi-brittle materials. In numerical modelling, these two mechanisms are normally treated differently and separately; the damage is usually associated with nonlocal approaches, while the fatigue crack growth is related to the local stress intensity range at the crack tip. In this study, a discrete element model for damage and fatigue crack growth of quasi-brittle materials is proposed, which is able to model the damage and fatigue crack growth simultaneously in one single model. The proposed model achieves the implementation of a continuum damage model in a discrete element code, which is a helpful enrichment of this numerical method. The evaluation method of the stress intensity range during the damage evolution provides a way to couple both failure mechanisms. This feature allows crack initiation to be induced by localized damage and a progressive transition to a fracture behaviour with the crack propagation. Independent parameters for the fatigue damage model and fatigue crack growth model are admitted without any previous calibration. The numerical results are in good agreement with the theoretical predictions of damage and fracture mechanics, and intact and precracked samples are analysed under fatigue loading to show the consistent coexistence of fractured and damaged zones in a single model.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3