Affiliation:
1. School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong, China
2. Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong, China
3. Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong, China
4. Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou 510006, China
Abstract
Isoflavaspidic acid PB (PB), a phloroglucinol derivative extracted from aerial parts of Dryopteris fragrans (L.) Schott, had antifungal activity against several dermatophytes. This study was aimed at exploring the antifungal mechanism of PB against Trichophyton rubrum (T. rubrum). The effectiveness of PB in inhibiting T. rubrum growth was detected by time-kill kinetics study and fungal biomass determination. Studies on the mechanism of action were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), sorbitol and ergosterol assay, nucleotide leakage measurement, and UPLC-based test and enzyme-linked immunosorbent assay. Fungicidal activity of PB was concentration- and time-dependent at
(MIC: 20 μg/mL) after 36 h. The total biomass of T. rubrum was reduced by 64.17%, 77.65%, and 84.71% in the presence of PB at
,
, and
, respectively. SEM analysis showed that PB changed mycelial morphology, such as shrinking, twisting, collapsing, and even flattening. TEM images of treated cells exhibited abnormal distributions of polysaccharide particles, plasmolysis, and cytoplasmic content degradation accompanied by plasmalemma disruption. There were no changes in the MIC of PB in the presence of sorbitol. However, the MIC values of PB were increased by 4-fold with exogenous ergosterol. At 4 h and 8 h, PB increased nucleotide leakage. Besides, ergosterol content in T. rubrum membrane treated with PB at
,
, and
was decreased by 9.58%, 15.31%, and 76.24%, respectively. There was a dose-dependent decrease in the squalene epoxidase (SE) activity. And the reduction in the sterol 14α-demethylase P450 (CYP51) activity was achieved after PB treatments at
and
. These results suggest that PB displays nonspecific action on the cell wall. The membrane damaging effects of PB were attributed to binding with ergosterol to increase membrane permeability and interfering ergosterol biosynthesis involved with the reduction of SE and CYP51 activities. Further study is needed to develop PB as a natural antifungal candidate for clinical use.
Funder
Guangdong Provincial Department of Science and Technology of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献