Top-kBased Adaptive Enumeration in Constraint Programming

Author:

Soto Ricardo123ORCID,Crawford Broderick145,Palma Wenceslao1,Monfroy Eric6ORCID,Olivares Rodrigo7ORCID,Castro Carlos8ORCID,Paredes Fernando9

Affiliation:

1. Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile

2. Universidad Autónoma de Chile, 7500138 Santiago, Chile

3. Universidad Central de Chile, 8370178 Santiago, Chile

4. Universidad Finis Terrae, 7501015 Santiago, Chile

5. Facultad de Ingeniería y Tecnología, Universidad San Sebastián, 8420524 Santiago, Chile

6. CNRS, LINA, University of Nantes, 44322 Nantes, France

7. Universidad de Valparaíso, 2362735 Valparaíso, Chile

8. Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

9. Escuela de Ingeniería Industrial, Universidad Diego Portales, 8370109 Santiago, Chile

Abstract

Constraint programming effectively solves constraint satisfaction and optimization problems by basically building, pruning, and exploring a search tree of potential solutions. In this context, a main component is the enumeration strategy, which is responsible for selecting the order in which variables and values are selected to build a possible solution. This process is known to be quite important; indeed a correct selection can reach a solution without failed explorations. However, it is well known that selecting the right strategy is quite challenging as their performance is notably hard to predict. During the last years, adaptive enumeration appeared as a proper solution to this problem. Adaptive enumeration allows the solving algorithm being able to autonomously modifying its strategies in solving time depending on performance information. In this way, the most suitable order for variables and values is employed along the search. In this paper, we present a new and more lightweight approach for performing adaptive enumeration. We incorporate a powerful classification technique named Top-kin order to adaptively select strategies along the resolution. We report results on a set of well-known benchmarks where the proposed approach noticeably competes with classical and modern adaptive enumeration methods for constraint satisfaction.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3