Micro-CT Characterization of Wellbore Cement Degradation in SO42-–Bearing Brine under Geological CO2 Storage Environment

Author:

Gan Manguang12,Zhang Liwei12ORCID,Miao Xiuxiu12,Wang Yan1,Fu Xiaojuan1,Bai Mingxing34,Li Xiaochun12

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Petroleum Engineering, Northeast Petroleum University, 163318 Daqing, China

4. Department of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

In order to explore the process of acid- and CO2-induced degradation of wellbore cement and the development of pre-existing leakage channels in wellbore cement under sulfate-rich geological CO2 storage conditions, wellbore cement samples were immersed in SO42--bearing brine solution for 7 days, and the samples after reacting with the low and circumneutral pH solutions were scanned by a micro-CT scanner. HCl+Na2SO4 solution was used to simulate the low-pH condition in deep formation waters and the possible existence of high sulfate ion content in deep formation waters. The acidification and carbonation results were compared, and the results given different pH values and different curing conditions were compared as well. The results show that the degradation of cement was related to the pH value of the reaction solution. There was a significant dissolution in the exterior of the cement sample after exposure to the low-pH solution, but the dissolution surrounding a penetrating borehole at the center of the sample (mimicking a leakage pathway within the wellbore cement in geological CO2 storage environment) was limited. Comparison between acidification and carbonation results in this study shows formation of a thick carbonate layer due to cement carbonation, and this layer was not observed in the acidification result. As for different curing conditions of cement samples, no significant difference in cement alteration depth was observed for the acidification case. For the carbonation case, precipitations in the borehole occurred in the cement sample cured at ambient pressure, while the cement sample cured at high pressure did not produce any precipitation in the borehole. This study provides valuable information on how low pH-induced corrosion and HCO3--induced cement carbonation contribute to structure evolution of wellbore cement in SO42--bearing brine under geological CO2 storage environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3