Recognition of Protein Network for Bioinformatics Knowledge Analysis Using Support Vector Machine

Author:

Kaur Arshpreet1ORCID,Chitre Abhijit2ORCID,Wanjale Kirti3ORCID,Kumar Pankaj4ORCID,Miah Shahajan5ORCID,Alguno Arnold C.6ORCID

Affiliation:

1. GNA University, Village Hargobindgarh, Phagwara, Punjab, India

2. Department of Electronics and Telecommunications, Vishwakarma Institute of Information Technology, Savitribai Phule Pune University, Pune, Maharashtra, India

3. Department of Computer Engineering, Vishwakarma Institute of Information Technology, Savitribai Phule Pune University, Pune, Maharashtra, India

4. Department of Computer Science & Engineering, Lloyd Institute of Engineering & Technology, Greater Noida, 201306 Uttar Pradesh, India

5. Department of EEE, Bangladesh University of Business and Technology (BUBT), Dhaka, Bangladesh

6. Department of Physics, Mindanao State University-Iligan Institute of Technology, Tibanga Highway, Iligan City 9200, Philippines

Abstract

Protein is the material foundation of living things, and it directly takes part in and runs the process of living things itself. Predicting protein complexes helps us understand the structure and function of complexes, and it is an important foundation for studying how cells work. Genome-wide protein interaction (PPI) data is growing as high-throughput experiments become more common. The aim of this research is that it provides a dual-tree complex wavelet transform which is used to find out about the structure of proteins. It also identifies the secondary structure of protein network. Many computer-based methods for predicting protein complexes have also been developed in the field. Identifying the secondary structure of a protein is very important when you are studying protein characteristics and properties. This is how the protein sequence is added to the distance matrix. The scope of this research is that it can confidently predict certain protein complexes rapidly, which compensates for shortcomings in biological research. The three-dimensional coordinates of C atom are used to do this. According to the texture information in the distance matrix, the matrix is broken down into four levels by the double-tree complex wavelet transform because it has four levels. The subband energy and standard deviation in different directions are taken, and then, the two-dimensional feature vector is used to show the secondary structure features of the protein in a way that is easy to understand. Then, the KNN and SVM classifiers are used to classify the features that were found. Experiments show that a new feature called a dual-tree complex wavelet can improve the texture granularity and directionality of the traditional feature extraction method, which is called secondary structure.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3