Method Validation and Measurement Uncertainty Estimation for Determination of Multiclass Pesticide Residues in Tomato by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

Author:

Shrestha Suraj1ORCID,Lamichhane Bandana1,Chaudhary Nibedita1

Affiliation:

1. National Food and Feed Reference Laboratory, Department of Food Technology and Quality Control, Kathmandu, Nepal

Abstract

Method validation is an essential technique for ensuring the reliability and accuracy of an analytical method. This study aimed to optimize and validate a fast, reliable, and accurate method for quantitatively determining pesticide residues of diverse chemical classes in the tomato matrix. Various method performance characteristics were tested and compared with predefined criteria. Twenty-six different pesticides of diverse chemical classes were selected based on their use in tomato cultivation and the availability of reference materials. The pesticide residues in tomato samples were extracted with the QuEChERS technique with some modifications, followed by injection into an LC-MS/MS system operating in an optimized method. The validated method demonstrated reasonable specificity, as there were no interferences from matrix components at the retention times of pesticides. The calibration curves for all pesticides exhibited excellent linearities, with correlation coefficients exceeding 0.99. No significant matrix effect was observed for all pesticides in tomatoes, as the values fell within the range of ±20%. All pesticides were quantified successfully at a concentration of 5 μg/kg except for carbaryl, with an average recovery of more than 70% and a relative standard deviation of less than 20%. Similarly, measurement uncertainties were also estimated based on the validation data, and the values were found below the default limit of 50%. Subsequently, the validated method was applied to analyze 52 locally collected tomato samples. Study findings revealed that only four of the studied pesticides were detected in these samples, and their concentrations were below the maximum residue limits (500 µg/kg each for carbendazim, imidacloprid, and metalaxyl) established for tomatoes by the Government of Nepal and the Codex Alimentarius Commission.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3