Developing a Robust Model Based on the Gaussian Process Regression Approach to Predict Biodiesel Properties

Author:

Pustokhina Inna1ORCID,Seraj Amir2ORCID,Hafsan Hafsan3ORCID,Mostafavi Seyed Mojtaba4ORCID,Alizadeh S. M.5ORCID

Affiliation:

1. Department of Propaedeutics of Dental Diseases, I. M. Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia

2. Department of Instrumentation and Industrial Automation, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran

3. Biology Department, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, Sultan Alauddin Street, Gowa 92118, South Sulawesi, Indonesia

4. HiTech Institute of Theoretical and Computational Chemistry, India

5. Petroleum Engineering Department, Australian College of Kuwait, West Mishref, Kuwait City, Kuwait

Abstract

Biodiesel is assumed a renewable and environmentally friendly fuel that possesses the potential to substitute petroleum diesel. The basic purpose of the present study is to design a precise algorithm based on Gaussian Process Regression (GPR) model with several kernel functions, i.e., Rational Quadratic, Squared Exponential, Matern, and Exponential, to estimate biodiesel properties. These properties include kinematic viscosity (KV), pour point (PP), iodine value (IV), and cloud point (CP) as a function of fatty acid composition. In order to develop this model, some variables are assumed, such as molecular weight, carbon number, double bond numbers, monounsaturated fatty acids, polyunsaturated fatty acid, weight percent of saturated acid, and temperature. The performance and efficiency of the GPR model are measured through several statistical criteria and the results are summarized in root mean square error (RMSE) and coefficients of determination ( R 2 ). R 2 and RMSE are sorted as 0.992 & 0.15697, 0.998 & 0.96580, 0.966 & 1.38659, and 0.968 & 1.56068 for four properties such as KV, IV, CP, and PP, respectively. It is worth to mention this point that the kernel function Squared Exponential shows a great performance for IV and PP and kernel functions Exponential and Matern indicate appropriate efficiency for CP and KV properties, respectively. On the other hand, the results of the offered GPR models are compared with those of the previous models, LSSVM-PSO and ANFIS. The outcomes proved the superiority of this model over two former models in point of estimating the biodiesel properties.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3