Affiliation:
1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
Abstract
Traditional image-centered methods of plant identification could be confused due to various views, uneven illuminations, and growth cycles. To tolerate the significant intraclass variances, the convolutional recurrent neural networks (C-RNNs) are proposed for observation-centered plant identification to mimic human behaviors. The C-RNN model is composed of two components: the convolutional neural network (CNN) backbone is used as a feature extractor for images, and the recurrent neural network (RNN) units are built to synthesize multiview features from each image for final prediction. Extensive experiments are conducted to explore the best combination of CNN and RNN. All models are trained end-to-end with 1 to 3 plant images of the same observation by truncated back propagation through time. The experiments demonstrate that the combination of MobileNet and Gated Recurrent Unit (GRU) is the best trade-off of classification accuracy and computational overhead on the Flavia dataset. On the holdout test set, the mean 10-fold accuracy with 1, 2, and 3 input leaves reached 99.53%, 100.00%, and 100.00%, respectively. On the BJFU100 dataset, the C-RNN model achieves the classification rate of 99.65% by two-stage end-to-end training. The observation-centered method based on the C-RNNs shows potential to further improve plant identification accuracy.
Funder
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献