Effect of CFRP Shear Strengthening on the Flexural Performance of the RC Specimen under Unequal Impact Loading

Author:

Liu Yanhui1ORCID,Al-Bukhaiti Khalil1ORCID,Abas Hussein1,Shichun Zhao1

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Strengthening with externally bonded CFRP reinforcement is widely used in structural reinforcement and attractive to stakeholders and engineers because of ease and speed of construction, corrosion resistance, lightweight, high strength, and versatility stiffness which can be oriented according to the need. Numerous research studies were carried out to explore RC beams’ flexural and shear performance when subjected to dynamic impact loading. The results were auspicious in using such a technique of strengthening. Regular square section reinforced concrete frame members strengthened by CFRP material is taken as the research object. However, little attention to the impact behavior of CFRP-shear-strengthened square reinforced concrete (RC) specimens has been paid. The dynamic response of CFRP to reinforced concrete members under unequal cross-impact is discussed. This paper investigates the effectiveness of CFRP strengthening on the square RC specimen in preventing shear failure and evaluation of the flexural performance of the strengthened specimen under the impact load. The drop hammer impact test is firstly conducted on RC specimens with and without CFRP strengthening. The results show that using CFRP to strengthen the RC specimen in shear is very effective at preventing shear failure and leading the specimen’s response to flexural domination. This result is also the motivation for developing a numerical model supported by experimental tests to study the flexural performance of strengthened RC specimens. It is found that the strengthened specimen is prone to exhibit pure bending deformation under the impact load in terms of dynamic amplification factor (DAF) for section moment. Then, an extensive parameter study is carried out to evaluate further the influence of impact velocity, reinforcement ratio, and concrete strength on the flexural performance of the strengthened specimen and CFRP layers. Such a holistic study may provide preliminary research regarding the use of CFRP to strengthen RC specimens in shear under impact loads and will enhance the current state of knowledge in this area; also, the optimal value of the CFRP reinforcement layer was proposed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference36 articles.

1. Behaviour of RC beams strengthened with CFRP laminates under quasi-static cyclic loading;G. Kashwani

2. Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets

3. Performance evaluation of retrofitting strategies for non-seismically designed RC buildings using steel braces

4. Flexural behavior of concrete beams strengthened with near-surface mounted GFRP bars;H. Zhang;Industrial Construction,2010

5. Behavior of support zone of cantilever beam embeded with FRP tendons;Y. Z. Zheng;Engineering Mechanics,2012

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3