Affiliation:
1. Department of Computer Science, Zhejiang University City College, Hangzhou 310015, China
Abstract
Indoor localization is of great importance in pervasive applications and RSS fingerprint is known as a quite effective indoor location method. Floor attenuation might not give enough margin discrepancy to classify two neighboring floors, such as windows nearby or ring structure. Fingerprint location using the nearest Euclidean distance to the reference point can be interfered by the neighboring floor. In this paper, a multifloor localization framework with floor identification is proposed. The discriminative floor model is trained to maximize between-class scatter and floor identification is triggered by stair walk and elevator events. In experiments, a real dataset is collected in the building of six floors to evaluate our method. The results show that our method can identify accurate location in multifloor environment.
Funder
Hangzhou Key Laboratory for IoT Technology & Application
Subject
Computer Networks and Communications,General Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献