State-to-State Collisional Dynamics by Coherent Laser Pulse Phase, Shape, and Frequency Modification

Author:

Banash Mark A.1,Warren Warren S.1

Affiliation:

1. Department of Chemistry, Princeton University, Princeton 08544, NJ, USA

Abstract

Conventional coherent pulse sequences such as photon echoes measure only highly averaged relaxation rates in complex multilevel systems, such as molecules undergoing state-changing collisions. Pulse frequency, phase, and shape control lets us generate sequences which give a more detailed understanding of the dynamics. Results of dual frequency, crafted shape sequences on I2 are presented which show that the "coherence dephasing" time T2 is primarily due to population redistribution (energy changing collisions) in the electronically excited state, and that the electronic ground state has a much smaller cross section for such collisions. Quantitative analysis is only possible with modified laser pulse shapes which excite a single velocity component, and requires pulse sequences which correct for the hyperfine dependence of predissociation. Since this correction is rarely made in previously reported coherent transient measurements, literature values of T2 and T1 may not be reliable in the zero pressure limit.

Publisher

Hindawi Limited

Subject

Spectroscopy,Biochemistry,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3