Untargeted Metabolomic Profiling of Cuprizone-Induced Demyelination in Mouse Corpus Callosum by UPLC-Orbitrap/MS Reveals Potential Metabolic Biomarkers of CNS Demyelination Disorders

Author:

Zhao Zhijie1ORCID,Li Tongqi2,Dong Xiaohua34,Wang Xiaojing1,Zhang Zhongxiao3,Zhao Changyi1,Kang Xueran5,Zheng Ruizhe1ORCID,Li Xinyuan1ORCID

Affiliation:

1. Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

2. Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200940, China

3. Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

4. Department of Pediatrics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, China

5. Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Abstract

Multiple sclerosis (MS) is a neurodegenerative disorder characterized by periodic neuronal demyelination, which leads to a range of symptoms and eventually to disability. The goal of this research was to use UPLC-Orbitrap/MS to identify validated biomarkers and explore the metabolic mechanisms of MS in mice. Thirty-two C57BL/6 male mice were randomized into two groups that were fed either normal food or 0.2% CPZ for 11 weeks. The mouse demyelination model was assessed by LFB and the expression of MBP by immunofluorescence and immunohistochemistry. The metabolites of the corpus callosum were quantified using UPLC-Orbitrap/MS. The mouse pole climbing experiment was used to assess coordination ability. Multivariate statistical analysis was adopted for screening differential metabolites, and the ingenuity pathway analysis (IPA) was used to reveal the metabolite interaction network. We successfully established the demyelination model. The CPZ group slowly lost weight and showed an increased pole climbing time during feeding compared to the CON group. A total of 81 metabolites ( VIP > 1 and P < 0.05 ) were determined to be enriched in 24 metabolic pathways; 41 metabolites were markedly increased, while 40 metabolites were markedly decreased in the CPZ group. The IPA results revealed that these 81 biomarker metabolites were associated with neuregulin signaling, PI3K-AKT signaling, mTOR signaling, and ERK/MAPK signaling. KEGG pathway analysis showed that two significantly different metabolic pathways were enriched, namely, the glycerophospholipid and sphingolipid metabolic pathways, comprising a total of nine biomarkers. Receiver operating characteristic analysis showed that the metabolites (e.g., PE (16 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), PC (18 : 0/22 : 4(7Z, 10Z, 13Z, 16Z)), cytidine 5 -diphosphocholine, PS (18 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), glycerol 3-phosphate, SM (d18 : 0/16 : 1(9Z)), Cer (d18:1/18 : 0), galabiosylceramide (d18:1/18 : 0), and GlcCer (d18:1/18 : 0)) have good discrimination ability for the CPZ group. In conclusion, the differential metabolites have great potential to serve as biomarkers of demyelinating diseases. In addition, we identified metabolic pathways associated with CPZ-induced demyelination pathogenesis, which provided a new perspective for understanding the relationship between metabolites and CNS demyelination pathogenesis.

Funder

Famous Doctor’s Workshop in Changning District of Shanghai

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3