Affiliation:
1. Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
2. Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200940, China
3. Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
4. Department of Pediatrics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, China
5. Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Abstract
Multiple sclerosis (MS) is a neurodegenerative disorder characterized by periodic neuronal demyelination, which leads to a range of symptoms and eventually to disability. The goal of this research was to use UPLC-Orbitrap/MS to identify validated biomarkers and explore the metabolic mechanisms of MS in mice. Thirty-two C57BL/6 male mice were randomized into two groups that were fed either normal food or 0.2% CPZ for 11 weeks. The mouse demyelination model was assessed by LFB and the expression of MBP by immunofluorescence and immunohistochemistry. The metabolites of the corpus callosum were quantified using UPLC-Orbitrap/MS. The mouse pole climbing experiment was used to assess coordination ability. Multivariate statistical analysis was adopted for screening differential metabolites, and the ingenuity pathway analysis (IPA) was used to reveal the metabolite interaction network. We successfully established the demyelination model. The CPZ group slowly lost weight and showed an increased pole climbing time during feeding compared to the CON group. A total of 81 metabolites (
and
) were determined to be enriched in 24 metabolic pathways; 41 metabolites were markedly increased, while 40 metabolites were markedly decreased in the CPZ group. The IPA results revealed that these 81 biomarker metabolites were associated with neuregulin signaling, PI3K-AKT signaling, mTOR signaling, and ERK/MAPK signaling. KEGG pathway analysis showed that two significantly different metabolic pathways were enriched, namely, the glycerophospholipid and sphingolipid metabolic pathways, comprising a total of nine biomarkers. Receiver operating characteristic analysis showed that the metabolites (e.g., PE (16 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), PC (18 : 0/22 : 4(7Z, 10Z, 13Z, 16Z)), cytidine 5
-diphosphocholine, PS (18 : 0/22 : 6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)), glycerol 3-phosphate, SM (d18 : 0/16 : 1(9Z)), Cer (d18:1/18 : 0), galabiosylceramide (d18:1/18 : 0), and GlcCer (d18:1/18 : 0)) have good discrimination ability for the CPZ group. In conclusion, the differential metabolites have great potential to serve as biomarkers of demyelinating diseases. In addition, we identified metabolic pathways associated with CPZ-induced demyelination pathogenesis, which provided a new perspective for understanding the relationship between metabolites and CNS demyelination pathogenesis.
Funder
Famous Doctor’s Workshop in Changning District of Shanghai
Subject
Cell Biology,Aging,General Medicine,Biochemistry