Temporal Succession of Phytoplankton Assemblages in a Tidal Creek System of the Sundarbans Mangroves: An Integrated Approach

Author:

Bhattacharjee Dola12ORCID,Samanta Brajogopal1,Danda Anamitra Anurag3,Bhadury Punyasloke1ORCID

Affiliation:

1. Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur Campus, Nadia, Mohanpur-741252, West Bengal, India

2. Ministry of Environment and Forests, Eastern Regional Office, Chandrasekharpur, Bhubaneswar-751023, Odisha, India

3. Sundarbans Programme and Climate Adaptation (Coastal Ecosystems), WWF-India, Jodhpur Park, Kolkata-700068, West Bengal, India

Abstract

Sundarbans, the world's largest mangrove ecosystem, is unique and biologically diverse. A study was undertaken to track temporal succession of phytoplankton assemblages at the generic level (≥10 µm) encompassing 31 weeks of sampling (June 2010–May 2011) in Sundarbans based on microscopy and hydrological measurements. As part of this study, amplification and sequencing of type ID rbcL subunit of RuBisCO enzyme were also applied to infer chromophytic algal groups (≤10 µm size) from one of the study points. We report the presence of 43 genera of Bacillariophyta, in addition to other phytoplankton groups, based on microscopy. Phytoplankton cell abundance, which was highest in winter and spring, ranged between 300 and 27,500 cells/L during this study. Cell biovolume varied between winter of 2010 (90–35281.04 µm3) and spring-summer of 2011 (52–33962.24 µm3). Winter supported large chain forming diatoms, while spring supported small sized diatoms, followed by other algal groups in summer. The clone library approach showed dominance of Bacillariophyta-like sequences, in addition to Cryptophyta-, Haptophyta-, Pelagophyta-, and Eustigmatophyta-like sequences which were detected for the first time highlighting their importance in mangrove ecosystem. This study clearly shows that a combination of microscopy and molecular tools can improve understanding of phytoplankton assemblages in mangrove environments.

Publisher

Hindawi Limited

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3