Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications

Author:

Matulevicius Jonas1,Kliucininkas Linas1ORCID,Martuzevicius Dainius1,Krugly Edvinas1,Tichonovas Martynas1ORCID,Baltrusaitis Jonas2

Affiliation:

1. Department of Environmental Technology, Kaunas University of Technology, Radvilenu plentas 19, 50254 Kaunas, Lithuania

2. Photo Catalytic Synthesis Group, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Electrospun polyamide 6 (PA 6) and polyamide 6/6 (PA 6/6) nanofibers were produced in order to investigate their experimental characteristics with the goal of obtaining filtration relevant fiber media. The experimental design model of each PA nanofibers contained the following variables: polymer concentration, ratio of solvents, nanofiber media collection time, tip-to-collector distance, and the deposition voltage. The average diameter of the fibers, their morphology, basis weight, thickness, and resulting media solidity were investigated. Effects of each variable on the essential characteristics of PA 6/6 and PA 6 nanofiber media were studied. The comparative analysis of the obtained PA 6/6 and PA 6 nanofiber characteristics revealed that PA 6/6 had higher potential to be used in filtration applications. Based on the experimental results, the graphical representation—response surfaces—for obtaining nanofiber media with the desirable fiber diameter and basis weight characteristics were derived. Based on the modelling results the nanofiber filter media (mats) were fabricated. Filtration results revealed that nanofiber filter media electrospun from PA6/6 8% (w/vol) solutions with the smallest fiber diameters (62–66 nm) had the highest filtration efficiency (PA6/6_30 = 84.9–90.9%) and the highest quality factor (PA6/6_10 = 0.0486–0.0749 Pa−1).

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3