Towards a Severity Assessment Method for Potential Cyber Attacks to Connected and Autonomous Vehicles

Author:

He Qiyi1ORCID,Meng Xiaolin1,Qu Rong2

Affiliation:

1. Nottingham Geospatial Institute, University of Nottingham, Nottingham, UK

2. School of Computer Science, University of Nottingham, Nottingham, UK

Abstract

CAV (connected and autonomous vehicle) is a crucial part of intelligent transportation systems. CAVs utilize both sensors and communication components to make driving decisions. A large number of companies, research organizations, and governments have researched extensively on the development of CAVs. The increasing number of autonomous and connected functions however means that CAVs are exposed to more cyber security vulnerabilities. Unlike computer cyber security attacks, cyber attacks to CAVs could lead to not only information leakage but also physical damage. According to the UK CAV Cyber Security Principles, preventing CAVs from cyber security attacks need to be considered at the beginning of CAV development. In this paper, a large set of potential cyber attacks are collected and investigated from the aspects of target assets, risks, and consequences. Severity of each type of attacks is then analysed based on clearly defined new set of criteria. The levels of severity for the attacks can be categorized as critical, important, moderate, and minor. Mitigation methods including prevention, reduction, transference, acceptance, and contingency are then suggested. It is found that remote control, fake vision on cameras, hidden objects to LiDAR and Radar, spoofing attack to GNSS, and fake identity in cloud authority are the most dangerous and of the highest vulnerabilities in CAV cyber security.

Funder

University Of Nottingham

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dynamic Threat Prevention Framework for Autonomous Vehicle Networks based on Ruin-theoretic Security Risk Assessment;ACM Journal on Autonomous Transportation Systems;2024-08-09

2. Enchanced CAV Security Using Machine Learning;2024 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2024-08-01

3. Exploring effective strategies against cyberattacks: the case of the automotive industry;Environment Systems and Decisions;2024-05-04

4. Security of Connected and Autonomous Vehicles: A Review of Attacks and Mitigation Strategies;SoutheastCon 2024;2024-03-15

5. A hybrid technique for an autonomous vehicle control system to enhance the vehicle robustness: a HBA-RBFNN technique;International Journal of Electric and Hybrid Vehicles;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3