Machine Learning Analysis of Immune Cells for Diagnosis and Prognosis of Cutaneous Melanoma

Author:

Du Huibin1ORCID,He Yan1,Lu Wei1,Han Yu1,Wan Qi1

Affiliation:

1. Department of Ophthalmology, People’s Hospital of Leshan, Leshan, China

Abstract

Tumor infiltration, known to associate with various cancer initiations and progressions, is a promising therapeutic target for aggressive cutaneous melanoma. Then, the relative infiltration of 24 kinds of immune cells in melanoma was assessed by a single sample gene set enrichment analysis (ssGSEA) program from a public database. The multiple machine learning algorithms were applied to evaluate the efficiency of immune cells in diagnosing and predicting the prognosis of melanoma. In comparison with the expression of immune cell in tumor and normal control, we built the immune diagnostic models in training dataset, which can accurately classify melanoma patients from normal (LR AUC = 0.965, RF AUC = 0.99, SVM AUC = 0.963, LASSO AUC = 0.964, and NNET AUC = 0.989). These diagnostic models were also validated in three outside datasets and suggested over 90% AUC to distinguish melanomas from normal patients. Moreover, we also developed a robust immune cell biomarker that could estimate the prognosis of melanoma. This biomarker was also further validated in internal and external datasets. Following that, we created a nomogram with a composition of risk score and clinical parameters, which had high accuracies in predicting survival over three and five years. The nomogram’s decision curve revealed a bigger net benefit than the tumor stage. Furthermore, a risk score system was used to categorize melanoma patients into high- and low-risk subgroups. The high-risk group has a significantly lower life expectancy than the low-risk subgroup. Finally, we observed that complement, epithelial-mesenchymal transition, and inflammatory response were significantly activated in the high-risk group. Therefore, the findings provide new insights for understanding the tumor infiltration relevant to clinical applications as a diagnostic or prognostic biomarker for melanoma.

Publisher

Hindawi Limited

Subject

Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3