U-Model and U-Control Methodology for Nonlinear Dynamic Systems

Author:

Zhang Weicun1ORCID,Zhu Quanmin2ORCID,Mobayen Saleh34,Yan Hao5ORCID,Qiu Ji2,Narayan Pritesh2

Affiliation:

1. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK

3. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan

4. Department of Electrical Engineering, University of Zanjan, Zanjan 45371-38791, Iran

5. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

This study presents the fundamental concepts and technical details of a U-model-based control (U-control for short) system design framework, including U-model realisation from classic model sets, control system design procedures, and simulated showcase examples. Consequently, the framework provides readers with clear understandings and practical skills for further research expansion and applications. In contrast to the classic model-based design and model-free design methodologies, this model-independent design takes two parallel formations: (1) it designs an invariant virtual controller with a specified closed-loop transfer function in a feedback control loop and (2) it determines the real controller output by resolving the inverse of the plant U-model. It should be noted that (1) this U-control provides a universal control system design platform for many existing linear/nonlinear and polynomial/state-space models and (2) it complements many existing design approaches. Simulation studies are used as examples to demonstrate the analytically developed formulations and guideline for potential applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3