Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems

Author:

Bergamo Edmara T. P.1ORCID,de Araújo-Júnior Everardo N. S.1ORCID,Lopes Adolfo C. O.1ORCID,Coelho Paulo G.234ORCID,Zahoui Abbas1ORCID,Benalcázar Jalkh Ernesto B.12ORCID,Bonfante Estevam A.1ORCID

Affiliation:

1. Department of Prosthodontics and Periodontology, Bauru School of Dentistry-University of Sao Paulo, Bauru 17012-980, Brazil

2. Department of Biomaterials and Biomimetics, New York University College of Dentistry, USA

3. Department of Biomedical Engineering, New York University Tandon School of Engineering Brooklyn, USA

4. Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York City, 10010 NY, USA

Abstract

The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5×10mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (β) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3