Redox Chemistry and [Au(CN)2-] in the Formation of Gold Metabolites

Author:

Shaw III G. Frank12,Schraa Sabine12,Gleichmann Ernst12,Grover Yash Paul12,Dunemann Lothar12,Jagarlamudi Annapurna12

Affiliation:

1. Medizinisches Institut für Umwelthygiene, Department of Immunobiology, Postfach 10 37 51, Düsseldorf D-40225, Germany

2. The Department of Chemistry, The University of Wisconsin-Milwaukee, PO. Box 413, Milwaukee WI53201-0413, USA

Abstract

The role of hypochlorite ion, which can be generated by the enzyme myleoperoxidase, in the biochemistry of gold(I) anti-arthritic drugs was investigated. Sodium hypochlorite (OCl) directly and rapidly oxidizes AuSTm, Au(CN)2-, AuSTg (gold thioglucose) and auranofin (Et3PAuSATg). The resulting gold(III) species were detected by an Ion Chromotography Ion-Pairing technique that was developed to distinguish gold(I) and gold(III). Formation of Au(III) was also demonstrated spectrophotometrically after the conversion to AuCl4. The reactions of AuSTm, AuSTg, and auranofin are complex and gold(III) appears only after the initial oxidation of the thiolate (and phosphine) ligands.The enzymatic reaction, using MPO with H2O2 and Cl as substrates, leads to slow oxidation of Au(CN)2-, AuSTm or AuSTg. The extent and rate of reaction depend on the concentrations of MPO, H2O2, and Au(I). The continued presence of Au(I) during the initial stages of reaction (oxidation of the thiolates in AuSTm and AuSTg) and the conversion to Au(III) in the latter stages of the reaction were demonstrated.Au(CN)2-, a gold metabolite, binds tightly to serum albumin. Unlike other gold(I) complexes, aurocyanide reacts almost negligibly at Cys-34 via ligand exchange. Instead, there is a strong association (K1 = 5.5 × 104 and K2 = 7.0 × 103; n1 = 0.8 and n2 = 3) of intact Au(CN)2-. The full extent of binding is revealed only by equilibrium methods such as NMR or ultrafiltration; the bound gold dissociates extensively on conventional gel-exclusion columns and partially on Penefesky spun columns.The immunological and pharmacological significance of these results are discussed.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Drug Discovery,Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3