Dynamic Response Analysis of Roadway Surrounding Rock Induced by Dynamic Load under the Action of Hard and Thick Rock Stratum

Author:

Liang Kaihua12,Wu Quansen3ORCID,Wu Quanlin34ORCID,Shi Xiang12,Zhao Hong156,Ma Fuwu12,Zhang Zhaomin12

Affiliation:

1. Engineering Laboratory of Deep Mine Rockburst Disaster Assessment, Shandong Province, Jinan 250100, China

2. Shandong Province Research Institute of Coal Geology Planning and Exploration, Jinan 250100, China

3. Jining University, Qufu 273100, China

4. Yankuang Energy Group Company Limited, Zoucheng 273500, China

5. Physical Exploration and Survey Team of Shandong Bureau of Coal Geology, Jinan 250100, China

6. Shandong Taishan Resources Prospecting Group Ltd., Taian 271000, China

Abstract

In the process of coal seam mining, there are often hard thick key layers in the overlying strata. Due to the high strength and good integrity of the hard thick key layer, after the hard thick key layer is broken, the overlying strata will collapse and lose stability in a large area, which is very easy to induce dynamic disasters such as rock burst, mine earthquake, coal wall caving, and roof slab caving. Aiming at the hard and thick key layer overlying the working face, the dynamic response of the mine under the strong mine earthquake induced by the breaking of the main key layer of high-level magmatic rock is numerically simulated and analyzed by using FLAC2D numerical simulation software, and the variation laws of the stress field, displacement field, and velocity field of the coal seam roadway under different boundary conditions and different focal heights are studied. The research shows that the roof of solid coal roadway is prone to vibration in a small range, and the displacement increases and decreases with the disturbance. The displacement of the floor and two sides of the solid coal roadway and the top floor and two sides of the roadway along the goaf continues to increase in the initial stage of the disturbance, and the displacement will remain stable with the continuation of the disturbance. The displacement of both sides and roof and floor of gob roadway can reach stability in the later stage of disturbance, and with the increase of the number of adjacent goaf, the longer it takes for the displacement of surrounding rock to reach stability. When the focal height is lower than 90 m, the variation of surrounding rock response increases sharply with the decrease of focal height. When a strong earthquake occurs in the low rock stratum, the impact damage of roadway surrounding rock is almost inevitable. The influence degree of strong earthquake on the stability of roadway surrounding rock is arranged as follows: gob-side roadway (mined out on one side) > solid coal roadway (mined out on both sides) > solid coal roadway (mined out on one side). The evolution process also shows that the working face boundary conditions have an important influence on the energy propagation of mine earthquake. With the increase of the number of adjacent goafs, the faster the energy attenuation rate of mine earthquake propagation is. The research results have important reference significance for the safe mining of working face under similar geological conditions.

Funder

Jining key research and development plan

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3