Estimating Macroscopic Volume Delay Functions with the Traffic Density Derived from Measured Speeds and Flows

Author:

Kucharski Rafał1ORCID,Drabicki Arkadiusz1

Affiliation:

1. Department of Transportation Systems, Cracow University of Technology, Ul. Warszawska 24, 31-155 Kraków, Poland

Abstract

This paper proposes a new method to estimate the macroscopic volume delay function (VDF) from the point speed-flow measures. Contrary to typical VDF estimation methods it allows estimating speeds also for hypercritical traffic conditions, when both speeds and flow drop due to congestion (high density of traffic flow). We employ the well-known hydrodynamic relation of fundamental diagram to derive the so-called quasi-density from measured time-mean speeds and flows. This allows formulating the VDF estimation problem with a speed being monotonically decreasing function of quasi-density with a shape resembling the typical VDF like BPR. This way we can use the actually observed speeds and propose the macroscopic VDF realistically reproducing actual speeds also for hypercritical conditions. The proposed method is illustrated with half-year measurements from the induction loop system in city of Warsaw, which measured traffic flows and instantaneous speeds of over 5 million vehicles. Although the proposed method does not overcome the fundamental limitations of static macroscopic traffic models, which cannot represent dynamic traffic phenomena like queue, spillback, wave propagation, capacity drop, and so forth, we managed to improve the VDF goodness-of-fit fromR2of 27% to 72% most importantly also for hypercritical conditions. Thanks to this traffic congestion in macroscopic traffic models can be reproduced more realistically in line with empirical observations.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3