Stellate Cell Activation and Imbalanced Expression of TGF-β1/TGF-β3 in Acute Autoimmune Liver Lesions Induced by ConA in Mice

Author:

Wang Liyun12ORCID,Tu Lei2,Zhang Jinping3,Xu Keshu2ORCID,Qian Wei2

Affiliation:

1. Division of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China

2. Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

3. Division of Neurology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China

Abstract

Objective. To study the pathogenic feature of liver injury, activation of hepatic stellate cells, and dynamic expression of TGF-β1/TGF-β3 to reveal their role in liver injury induced by ConA.Methods. Mice were randomly divided into control group and ConA treatment group. ConA (20 mg/kg) was injected through vena caudalis in ConA treatment group; the controls received the same volume of saline injection. After injection for 2 h, 8 h, 24 h, and 48 h, animals were terminated. Blood, liver, and spleen were harvested. Liver function and histopathology were studied.α-SMA, vimentin, TGF-β1, and TGF-β3 were detected.Results. After ConA injection, liver damage started to increase. Expression ofα-SMA, vimentin, TGF-β1, and TGF-β3 was significantly enhanced; all above indicators reached peak at 8 h; but from 24 h after ConA injection, TGF-β3 expression began to decline, while the TGF-β1/TGF-β3 ratio at 48 h was significantly lower than control.Conclusion. (1) Autoimmune liver injury induced by ConA showed time-based features, in which the most serious liver lesions happened at 8 h after ConA injection. (2) Early activation of HSC and imbalance expression of TGF-β1 and TGF-β3 existed in ConA-induced acute autoimmune liver injury, which may be associated with liver dysfunction and the mechanisms of progression to fibrosis.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3