A Novel Optimization Method for Bipolar Chaotic Toeplitz Measurement Matrix in Compressed Sensing

Author:

Zhang Rui1ORCID,Meng Chen1,Wang Cheng1ORCID,Wang Qiang1

Affiliation:

1. Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China

Abstract

In this paper, a bipolar chaotic Toeplitz measurement matrix optimization algorithm for alternating optimization is presented. The construction of measurement matrices is one of the key techniques for compressive sensing from theory to engineering applications. Recent studies have shown that bipolar chaotic Toeplitz matrices, constructed by combining the intrinsic determinism of bipolar chaotic sequences with the advantages of Toeplitz matrices, have significant advantages over other measurement matrices in terms of memory overhead, computational complexity, and hard implementation. However, problems such as strong correlation and large interdependence coefficients between measurement matrices and sparse dictionaries may still exist in practical applications. To address this problem, we propose a new bipolar chaotic Toeplitz measurement matrix alternating optimization algorithm. Firstly, by introducing the structure matrix, the optimization problem of the measurement matrix is transformed into the optimization problem of the generating sequence, thus ensuring that the optimization process does not destroy the structural properties of the matrix; then, constraints are added to the values of the generating sequence during the optimization process, so that the optimized measurement matrix still maintains the bipolar properties. Finally, the effectiveness of the optimization algorithm in this paper is verified by simulation experiments. The experimental results show that the optimized bipolar chaotic Toeplitz measurement matrix can effectively reduce the reconstruction error and improve the reconstruction probability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3