The Correlation of Texture and the Formation of the Adiabatic Shear Band in 7XXX Aluminum Alloy during Dynamic Loading

Author:

Wu Xiaodong1ORCID

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

Abstract

The mechanical behavior of the extruded 7003-T6 aluminum profiles used as automotive buffer beams is investigated. The correlation of the texture and the formation of the adiabatic shear band is analyzed. Copper texture, R texture, and S texture are the main reasons for the anisotropy of mechanical behavior of the profile, resulting in that the stress of the profile along the extrusion direction is higher than that perpendicular to the extrusion direction. Through finite element modeling (FEM), it can be found that the adiabatic shear band is developed in the sample if the dynamic loading direction is parallel to the extrusion direction, but it does not appear if the loading direction is perpendicular to the extrusion direction. When the dynamic loading direction is parallel to the extrusion direction, higher stress results in a lower energy barrier for shear localization. Therefore, the formation of the adiabatic shear band is susceptible along but is not sensitive perpendicular to the extrusion direction. This study provides technical support for the service of 7003 aluminum alloy in automobiles, which has important academic and engineering application value.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3