Photodynamic Efficiency of Xanthene Dyes and Their Phototoxicity against a Carcinoma Cell Line: A Computational and Experimental Study

Author:

Buck Suelen T. G.1,Bettanin Fernanda2,Orestes Ednilson3,Homem-de-Mello Paula2ORCID,Imasato Hidetake1,Viana Rommel B.1ORCID,Perussi Janice R.1ORCID,da Silva Albérico B. F.1ORCID

Affiliation:

1. Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil

2. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil

3. Escola de Engenharia Industrial Metalúrgica de Volta Redonda, Departamento de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil

Abstract

The aim of this study is to assess the insights of molecular properties of the xanthene dyes [fluorescein (FL), Rose Bengal (RB), erythrosin B (EB), and eosin Y (EY)] to correlate systematically their photodynamic efficiency as well as their phototoxicity against a carcinoma cell line. The phototoxicity was evaluated by comparing the values of the medium inhibitory concentration (IC50) upon HEp-2 cells with the xanthene corresponding photodynamic activity using the uric acid as a chemical dosimeter and their octanol-water partition coefficient (logP). RB was the more cytotoxic dye against HEp-2 cell line and the most efficient photosensitizer in causing photoxidation of uric acid; nevertheless it was the only one characterized as being hydrophobic among the xanthenes studied here. On the other hand, it was observed that the halogen substituents increased the hydrophilicity and photodynamic activity, consistent with the cytotoxic experiments. Furthermore, the reactivity index parameters, electric dipole moment, molecular volume, and the frontier orbitals were also obtained by the Density Functional Theory (DFT). The lowest dipole moment and highest molecular volume of RB corroborate with its highest hydrophobicity due to heavy atom substituents like halogens, while the halogen substituents did not affect expressively the electronic features at all.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3