Biogas Production Optimization in the Anaerobic Codigestion Process: A Critical Review on Process Parameters Modeling and Simulation Tools

Author:

Kelif Ibro Mohammed1,Ramayya Ancha Venkata1,Beyene Lemma Dejene2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia

2. Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia

Abstract

Many operational parameters, either discretely or collectively, can influence the biodegradation performance towards enhancing biogas yield and quality. Among the operating parameters, organic loading rate (OLR), inoculum-substrate ratio, and carbon-nitrogen ratio (C/N) are the most critical parameters in the optimization and enhancement of biogas yield. Optimization of the biogas production processes depends on the ability of anaerobic microorganisms to respond to variations in operational parameters such as pH, redox potential, and intermediate products to enhance the biogas yield. This review article focuses on the role of process parameters, kinetic models, artificial intelligence, Aspen Plus (AP), and anaerobic digestion model no. 1 (ADM1) in optimizing biogas yield via an anaerobic codigestion (AcoD) process. The review showed that biomaterials codigestion upgraded biogas yield to the extent of 400%, and organic removal efficiency reached up to 90% compared to a single substrate. In addition, the current work has verified that the kinetic model is the most effective tool for signifying that the hydrolysis phase is the rate-limiting step, whereas AP is the most effective tool in the design and optimization of the AcoD process parameters. The reviewed kinetic and AI models show strong correlation values ranging from 0.931 to 0.9991 and 0.8700 to 0.9998, respectively. The AcoD system involves complex chemical reactions, but AP might have limitations in representing such complex chemical processes with nonideal behavior and complicated reaction mechanisms. The design and optimization of AcoD with reliable input parameters are highly limited or nonexistent. The AcoD process design with AP opens fresh research opportunities, including improved efficiency, finding appropriate retention time, and saving time, as well as finding the optimum biogas yield. This review article gives an insightful understanding of AcoD process parameter optimization and valuable strategies for policy development enhancing sustainability in the biogas sector.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3