Assess the Application of the E-Value in the Unmeasured Confounder Evaluation of Observational Pharmaceutical Studies

Author:

Huang Lihong12,Ma Jianbing3ORCID,Qiu Xiaochun4,Suo Tao5ORCID

Affiliation:

1. Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai 200032, China

2. Evidence-based Medicine Center, Fudan University, Shanghai 200032, China

3. School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

4. Library of Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China

5. General Surgery Department of Zhongshan Hospital, The General Surgery Institute, Fudan University, Shanghai 200032, China

Abstract

Public health is very important in big cities, and data analysis on public health studies is always a demanding issue that determines the study effectiveness. E-value was proposed as a standard sensitivity analysis tool to assess unmeasured confounders in observational studies, but its value is doubted. To evaluate the usefulness of E-value, in this paper, we collected 368 observational studies on drug effectiveness evaluation published from 1998 to September 2019 (out of 3426 searched studies) and evaluated the features of E-value. We selected the effects of primary outcomes or the largest effects in terms of hazard ratio, risk ratio, or odds ratio. Effects were transformed into estimated effect sizes following a standard E-value computation. In all 368 studies, the disease with the highest percentage was infections and infestations, at 21.7% (80/368). Our results showed that the median relative effect size was 1.89 (Q1-Q3: 1.41–2.95), and the corresponding median E-value was 3.19 with 95% confidence interval lower bound 1.77. Smaller studies yielded larger E-values for the effect size estimate and the relationship was considerably attenuated when considering the E-value for the lower bound of 95% confidence interval on the effect size. Notably, E-values have a monotonic, almost linear relationship with effect estimates. We found that E-value may cause misimpressions on the unmeasured confounder, and the same E-value does not reflect the varying nature of the unmeasured confounders in different studies, and there lacks a guidance on how E-value can be deemed as small or large, all of which limits the capability of E-value as a standard sensitivity analysis tool in real applications.

Funder

Sichuan Provincial Key Research and Development Program

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3