Induction of Apoptosis Coupled to Endoplasmic Reticulum Stress through Regulation of CHOP and JNK in Bone Marrow Mesenchymal Stem Cells from Patients with Systemic Lupus Erythematosus

Author:

Guo Genkai1,Meng Yan1,Tan Wei1,Xia Yunfei1,Cheng Chun2,Chen Xiaolan3,Gu Zhifeng1

Affiliation:

1. Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong 226001, China

2. Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, China

3. Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, China

Abstract

Previous studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) from patients with systemic lupus erythematosus (SLE) exhibited the phenomenon of apoptosis. In this study, we aimed to investigate whether apoptosis of BM-MSCs from SLE patients were dysregulated. In this paper, endoplasmic reticulum stress (ERS) was evidenced by increased expression of phosphorylated protein kinase RNA-like ER kinase (PERK) and inositol-requiring protein-1 (IRE-1). We also found the activation of downstream target eukaryotic translation initiator factor 2α(eIF 2α) and CCAAT/enhancer-binding protein- (C/EBP-) homologous protein (CHOP) in BM-MSCs from SLE patients. Interestingly, we discovered that 4-phenylbutyric acid (4-PBA), a selective inhibitor of ERS, blocked the apoptosis of BM-MSCs from SLE patients and alleviated the level of Jun N-terminal kinase1/2 (JNK1/2) and CHOP. Furthermore, blockage of PERK signaling expression by siRNA not only significantly reduced the expression of CHOP, but also activated the anti-apoptotic regulator B-cell lymphoma-2 (Bcl-2). Blockage of IRE-1 or JNK1/2 by siRNA resulted in the decreased expression of JNK1/2 and proapoptosis protein Bcl-2 associated protein X (BAX). These results implicated that ERS-mediated apoptosis was a critical determinant of BM-MSCs from SLE patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3