Particle Production at CBM Energies in a Thermal Model Approach

Author:

Prakash A.1,Srivastava P. K.1,Singh B. K.1

Affiliation:

1. Department of Physics, Banaras Hindu University, Varanasi 221005, India

Abstract

The compressed baryonic matter (CBM) experiment planned at the Facility for Antiproton and Ion Research (FAIR) will provide a major scientific effort for exploring the properties of strongly interacting matter in the high baryon density regime. One of the important goals behind such experiment is to precisely determine the equation of state (EOS) for the strongly interacting matter at extremely large baryon density. In this paper, we have used some successful models for RHIC and LHC energies to predict different particle ratios and the total multiplicity of various hadrons in the CBM energy range, that is, from 10 A GeV to 40 A GeV lab energies, which corresponds to 4.43 A GeV and 8.71 A GeV center-of-mass energies. Our main emphasis is to estimate the strange particles enhancement as well as an increase in the net baryon density at CBM experiment. We have also compared the model results with the experimental data obtained at alternating gradient synchrotron (AGS) and super proton synchrotron (SPS).

Funder

University Grants Commission

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3