Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data

Author:

Maghrabi A.1ORCID

Affiliation:

1. Institute of Climate Change, King Abdulaziz City For Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia

Abstract

In this study, solar ultraviolet (UV) radiation data collected in Riyadh, Saudi Arabia, between 2015 and 2022 were analyzed to explore quasi-periodicities in the UV time series. The power spectrum density analysis revealed several local peaks that exceeded the 95% confidence interval. These peaks included periodicities of 483–490 days, 272 days, 157−162 days, 103−110 days, 64–72 days, 27 days, and 13 days. To investigate the potential influence of space weather parameters on UV radiation, data on cosmic rays, solar radio flux at 10.7 cm (F10.7 cm), the Kp index, and solar wind speed for the same time period were examined. The aim was to identify periodicities in these variables that aligned with those found in the UV radiation data. The analysis reveals that several periodicities observed in the UV radiation spectrum are also present in the spectra of the considered parameters. Prominent periodicities include a 270-day cycle in UV radiation and cosmic rays, as well as periodicities of 72 days, 27 days, and 13 days in all considered variables. Furthermore, 110-day peaks are observed in spectrum of the UV radiation, the Kp index, solar radio flux F10.7, and solar wind speed. Notably, consistent peaks at 157-day periodicity are identified in the UV spectrum, also present in the spectra of all the considered variables (cosmic rays ∼162 days, Kp index ∼162 days, solar radio flux ∼156 days, and solar wind speed ∼163 days). The identification of common periodicities between UV radiation and space weather parameters in this study provides compelling evidence of a potential direct or indirect influence of solar variations on UV radiation. This finding significantly enhances our understanding of the impact of extraterrestrial factors, particularly solar activity, on the Earth’s environment.

Funder

King Abdulaziz City for Science and Technology

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3