Optimization Design of a Multibusbar Structure: The Using of a Conductive Belt

Author:

Han Han1ORCID,Wu Yelong12ORCID,Ma Chao1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

2. Key Laboratory of Nonequilibrium Synthesis and Modulation of Condensed Matter, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Abstract

An interconnect electrode called conductive belt was applied to modules instead of interconnection ribbons. The conductive belt has multiple wires and can achieve a multibusbar structure by forming ohmic contacts with the cell electrodes. The following problems were studied with innovative approaches to optimize the multibusbar modules: the shading rate and the contact resistance of the conductive belts, the relationship between the finger series resistance and the wire number, and the influence of the series resistance variation on the maximum power output. Furthermore, the wire number and diameter were optimized according to the following conditions: the cell sizes were full, half, and one-third, and the finger wet weights of a full cell were 80 mg, 40 mg, and 20 mg. The result showed that multibusbar and half-cell structures could achieve the maximum power output, the wire number was 16 and the wire diameter was 200 μm, and the finger wet weight was reduced to 20 mg. Finally, the reliability of the modules made with conductive belts was tested and was qualified according to International Electrotechnical Commission standards.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3