Experimental Investigation of Progressive Collapse of Prestressed Concrete Frames after the Loss of Middle Column

Author:

Yang Tao123ORCID,Chen Wanqing1ORCID,Han Zhongqing1ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning 530004, China

3. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning 530004, China

Abstract

Accidental loads such as explosion and vehicle impact could lead to failure of one or several load-bearing members in the structures, which is likely to trigger disproportionate progressive collapse of overall structures. Prestressed concrete (PC) frame structures are usually at great risk of collapse once load-bearing members fail, because the members in PC frame structures are usually subjected to much more load than those in common reinforced concrete (RC) frame structures. To investigate the progressive collapse behaviors of PC frame structures, five one-fourth reduced scaled frame substructures were fabricated and collapse tests were conducted on them. Influence of span-to-depth ratios of frame beams and prestress action modes on the collapse performance of PC frame structures was discussed. Experimental results indicated that PC frame substructures with different prestress action modes, including bonded prestress and unbonded prestress, presented different collapse resistance capabilities and deformability. Tensile force increment of the unbonded prestressing strands almost linearly increased with the vertical displacement of the failed middle column. Catenary action is one of the most important mechanisms in resisting structural collapse. Prestressing strands and longitudinal reinforcing bars in the frame beams benefited the formation and maintaining of catenary action. The ultimate deformability of the PC frame structures was tightly connected with the fracture of prestressing strand. In addition, a calculation method of dynamic increase factors (DIFs) suitable for PC frame structures was developed, which can be used to revise the design collapse load when static collapse analysis is conducted by the alternative path method. The DIFs of the five substructures were discussed on the basis of the proposed method; it revealed that the DIFs corresponding to the first peak loads and the ultimate failure loads for the PC frame substructures were less than 1.49 and 1.83, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3