A New Variational Assimilation Method Based on Gradient Information from Satellite Data

Author:

Zhong Bo1,Wang Yun-Feng1ORCID,Ma Gang2,Ma Xin-Yuan1,Yang Lu1

Affiliation:

1. Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

2. National Satellite Meteorological Center, Beijing, China

Abstract

With the development of meteorological observation technology, satellite data have found increasingly wide use in the numerical weather prediction field. However, there are various observational biases in satellite data, including a random bias brought about by complex weather systems and a systematic bias caused by the instrument itself, which greatly influence the quality of satellite data. A gradient information assimilation method is proposed in this paper to eliminate systematic bias. This method uses a gradient operator for gradient transformation between the model variable and observation variable and reaches the objective of eliminating systematic bias. An ideal experiment of variational data assimilation is conducted using the Community Radiative Transfer Model (CRTM) and Advanced Microwave Sounding Unit-A (AMSU-A) data, indicating that only assimilating gradient information can eliminate the smooth systematic bias in observation data. Then, a numerical simulation of tropical cyclone (TC) Megi and data assimilation experiment are conducted using the Weather Research Forecast (WRF) and WRF Data Assimilation (WRFDA) model as well as the Atmospheric Infrared Sounder (AIRS) data. The results show that the method of gradient information assimilation can improve the accuracy of TC tracks forecast and is also applicable for dealing with unreliable satellite data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3