hUMSCs Restore Uterine Function by Inhibiting Endometrial Fibrosis via Regulation of the MMP-9/TIMP-1 Ratio in CDDP-Induced Injury Rats

Author:

Tang Yu1,Si Yaru2,Liu Chengen3,Li Cui4,Qu Li4,Liu Ying4ORCID,Fu Qiang25ORCID,Luo Qianqian1ORCID

Affiliation:

1. College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, China

2. School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China

3. Clinical Medical School, Binzhou Medical University, Yantai, Shandong 264003, China

4. Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, China

5. Shandong Cellogene Medicine Science & Technology Co., Ltd., Yantai, Shandong 264003, China

Abstract

The fertility of females of childbearing age who are cured of cancer by chemotherapy is gradually declining globally. As a broad-spectrum chemotherapy drug in clinic, the damage of cisplatin (CDDP) to female reproductive function cannot be ignored. At present, the study of CDDP damage to the uterus is not sufficient, and the exact mechanism needs to be further explored. Therefore, we conducted this research to determine whether uterine injury in CDDP-induced injury rats might be improved by human umbilical cord mesenchymal stem cells (hUMSCs) and to further explore the precise mechanism. The rat model of CDDP-induced injury was established by intraperitoneal injection of CDDP, and hUMSCs were injected into the tail vein 7 days later. In vivo, uterine function in CDDP-induced injury rats was affected after hUMSC transplantation. In vitro, the specific mechanism was further explored from the cell and protein levels. Overall, the specific reason of CDDP-induced uterine dysfunction in rats was endometrial fibrosis, which was significantly improved after hUMSC transplantation. Further investigation of the mechanism found that hUMSCs could regulate the ratio of matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinase-1 (TIMP-1) in endometrial stromal cells (EnSCs) after CDDP injury.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3