Inner-View of Nanomaterial Incited Protein Conformational Changes: Insights into Designable Interaction

Author:

Mukhopadhyay Arka1,Basu Sankar2,Singha Santiswarup3,Patra Hirak K.456

Affiliation:

1. Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Germany

2. Clemson University, Computational Biophysics Group, Department of Physics and Astronomy, South Carolina, USA

3. Department of Microbiology Immunology and Infectious Diseases, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada

4. Linkoping University, Department of Clinical and Experimental Medicine, Linkoping, Sweden

5. Wolfson College, University of Cambridge, Cambridge, UK

6. University of Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge, UK

Abstract

Nanoparticle bioreactivity critically depends upon interaction between proteins and nanomaterials (NM). The formation of the “protein corona” (PC) is the effect of such nanoprotein interactions. PC has a wide usage in pharmaceuticals, drug delivery, medicine, and industrial biotechnology. Therefore, a detailed in-vitro, in-vivo, and in-silico understanding of nanoprotein interaction is fundamental and has a genuine contemporary appeal. NM surfaces can modify the protein conformation during interaction, or NMs themselves can lead to self-aggregations. Both phenomena can change the whole downstream bioreactivity of the concerned nanosystem. The main aim of this review is to understand the mechanistic view of NM-protein interaction and recapitulate the underlying physical chemistry behind the formation of such complicated macromolecular assemblies, to provide a critical overview of the different models describing NM induced structural and functional modification of proteins. The review also attempts to point out the current limitation in understanding the field and highlights the future scopes, involving a plausible proposition of how artificial intelligence could be aided to explore such systems for the prediction and directed design of the desired NM-protein interactions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3